電子煙比香菸減害!世衛菸草減害專家王郁揚怒批民進黨與董氏基金會比服貿更黑箱

台灣電子煙研究指出電子菸比香菸減害,世衛菸草減害專家王郁揚怒批民進黨與董氏基金會搞黑箱修法。 圖:擷取自airitilibrary。

台灣威卜 菸草減害網路媒體 VAPE TAIWAN 2023-12-29報導

世界衛生組織(世衛)認證的菸草減害專家王郁揚揭露了一項台灣電子菸研究的最新結果,顯示電子菸相對於傳統香菸在減害方面具有優勢,他同時痛批台灣民進黨政府及反菸團體董氏基金會,指責其在2023年黑箱制定菸害防制法時,忽視國際標準、科學證據以及民意,進而全面禁止電子菸,簡直比服貿、COVID19疫苗的黑箱更黑箱。

王郁揚指出,台灣政府修訂菸害防制法,不但沒有禁止傳統紙菸或降低香菸中的尼古丁含量,反而對多國承認有助於戒菸和減害的電子菸採取前面禁止的不合理措施。他強調,這種雙重標準不僅違背了國際標準,也有悖於科學研究的結果。

該項最新研究「電子煙氣膠對動脈硬化的影響:粒徑分佈和化學成分的作用」由國立臺灣大學環境工程學研究所研究生 陳彩鈴進行,指導教授為 蕭大智教授,口試委員為李俊璋、陳保中、楊鎧鍵、陳仁焜。研究分析了電子煙和傳統香菸的煙霧物化特性,包括粒徑分佈、金屬成分和多環芳烴(PAHs)成分。研究結果顯示,電子煙的金屬成分排放量低於香菸,且電子煙的多環芳烴量遠低於香菸。

此外,該研究使用多途徑粒徑沉積模式(MPPD)模擬了兩種煙霧在人體呼吸道中的沉積機率和區域,進而應用於增量終身致癌風險(ELCR)的評估,根據研究結果,電子煙的增量終身致癌風險值低於香菸。

然而,在強調電子菸減害效果的同時,研究也指出電子煙油中的成分可能對人體內皮細胞造成損害,引發發炎反應,儘管如此,相對於傳統香菸,電子煙的影響相對較小

對於這一系列研究結果,王郁揚強烈批評台灣民進黨政府和董氏基金會的作為,呼籲重新檢視對電子菸的不合理管制政策,以更客觀科學的態度面對這項減害菸品。他強調,為了保護國民以及下一代孩子的健康,政府應該更加注重科學證據,而非被政治與經濟因素左右,而犧牲國民的健康。

延伸閱讀:

電子煙氣膠對動脈硬化的影響:粒徑分佈和化學成分的作用(2026/09/21公開)

Effects of Electronic Cigarette Aerosols on Atherosclerosis: Role of Particle Size Distribution and Chemical Compositions

https://hdl.handle.net/11296/sp38un

摘要:

近年來市面上流行一種新興菸品電子煙,其原理是將金屬加熱芯通電產生熱能,加熱電子煙油產生煙霧。由於非透過燃燒方式,使用者認為其比傳統煙草香菸健康。然而,含有甘油、丙二醇及人工香精的電子煙油成分會在加熱過程中分解,產生有害副產物並被使用者吸入。此外,電子煙的加熱芯是由金屬零件所構成,已被證實其金屬成分會隨著霧化過程排放。這些有毒物質在人體呼吸道中的沉積會受到粒徑分佈的影響。因此,為了識別傳統香煙和電子煙的健康危害差別,本研究分析了這兩種菸品煙霧的物化特性,包含粒徑分佈、金屬及多環芳烴 (PAHs) 成分,並利用多途徑粒徑沉積模式 (MPPD) 模擬出顆粒沉積於人體呼吸道機率及區域,應用於增量終身致癌風險 (ELCR) 來評估兩種煙品的致癌風險。另一方面,由於吸入傳統煙草煙霧已被證實會造成動脈硬化發展,本研究利用人體主動脈內皮細胞 (HAECs) 及 ApoE-/- 小鼠暴露實驗,來觀察電子煙對動脈硬化的影響。


化學成分結果顯示,電子煙煙霧中的金屬鉻、錳、鎳、釩,以及香菸煙霧中的鎘、錳、鎳皆超過美國毒性物質及疾病登記署 (ATSDR) 規範的吸入最低風險值 (MRL)。由於電子煙是透過加熱方式霧化煙油並非燃燒,因此其產生的多環芳烴量遠低於香煙。氣膠物理特性結果顯示,電子煙與香菸產生的總顆粒濃度都為107 #/cm3。顆粒吸入人體後,兩者皆以沉積在肺泡區域為主,基於質量的總沉積機率電子煙為18.60%,香菸為15.44%。根據化學成分及肺部沉積劑量結果,電子煙的增量終身致癌風險值低於香煙。


細胞實驗方面,HAECs 暴露於電子煙油24小時後,觀察到活性氧物質 (ROS) 量顯著上升,mRNA 表達結果其差異與控制組相比皆未達到統計意義,但有觀察到劑量依賴性的現象。因此推測煙油中的成分可能會使內皮細胞功能受損並引起發炎反應。然而,在氣膠萃取物暴露組沒有觀察到清楚的效應,推測與用濾紙收集氣膠方式有關。濾紙收集為顆粒物質而非氣相污染物,此外,收集到的顆粒可能因其揮發性而損失。動物暴露結果方面,ApoE-/- 小鼠經短期及高劑量電子煙暴露後,頸動脈斑塊面積比例及內皮mRNA表達量與非暴露組相比皆未達到統計意義。

外文摘要:

A new type of cigarette product, electronic cigarettes (ECs), has become popular in recent years. ECs work by energizing the metal heating element to generate heat and evaporating the e-liquid to produce vapor. Due to the non-combustion process, users believe that it is healthier than traditional tobacco cigarettes (TCs). However, e-liquid ingredients containing vegetable glycerin, propylene glycol, and artificial flavoring will undergo thermal decomposition and produce harmful by-products inhaled by users. In addition, the heating element of EC is mainly composed of metals that have been confirmed can be transferred into aerosol during vaporization. The deposition of these toxic substances in the human respiratory tract will be affected by the particle size distribution. Therefore, to identify the difference in health hazards between TCs and ECs, this study analyzes both cigarette aerosols’ physical and chemical properties, including particle size distribution, metals, and polycyclic aromatic hydrocarbons (PAHs). The multiple-path particle dosimetry model (MPPD) is used to simulate the probability and area of particles deposited in the human respiratory tract and finally applies to excess lifetime cancer risk (ELCR) to assess the cancer risk of these two cigarette products. Since inhalation of TC smoke has been proven to cause the development of atherosclerosis, human aortic endothelial cells (HAECs) and ApoE-/- mice were used in this study to investigate the effects of inhaling EC aerosols on atherosclerosis.


For chemical composition analysis, Cr, Mn, Ni, V in EC vapor, and Cd, Mn, Ni in TC smoke exceed the inhalation minimum risk level (MRL) announced by the U.S. Agency for Toxic Substances and Disease Registry (ATSDR). Since EC produces vapor by evaporation rather than combustion, polycyclic aromatic hydrocarbon levels in EC vapor are much lower than TC smoke. The physical properties of aerosols show that the total particle concentration of EC and TC aerosols is up to 107 #/cm3. Both particles mainly deposit in the alveolar region after inhalation, and the total mass-based deposition fraction is 18.60% for EC and 15.44% for TC. Based on the chemical composition and lung deposited doses, EC aerosol has a lower ELCR value than TC aerosol.


For HAECs results, reactive oxygen species (ROS) levels increased significantly after direct exposure to e-liquid. The results of mRNA expression are not statistically significant compared with the control group but exhibit a dose-dependent phenomenon. Therefore, it is considered that the ingredients in the e-liquid have the potential to impair endothelial cell function and cause an inflammatory response. However, no clear effects were observed in the aerosol extract treatment, which may be due to the filter sampling method. The filter collected aerosols while not the gas-phase pollutants. Moreover, the collected aerosols may be changed due to their volatility. Furthermore, for ApoE-/- mice exposure study, the difference of plaque accumulation and the mRNA expression in the carotid artery between the vaping group and the non-vaping group did not reach statistical significance.

參考文獻:

Aherrera, A., Olmedo, P., Grau-Perez, M., Tanda, S., Goessler, W., Jarmul, S., . . . Navas-Acien, A. (2017). The association of e-cigarette use with exposure to nickel and chromium: a preliminary study of non-invasive biomarkers. Environmental Research, 159, 313-320.
Anderson, C., Majeste, A., Hanus, J., & Wang, S. (2016). E-cigarette aerosol exposure induces reactive oxygen species, DNA damage, and cell death in vascular endothelial cells. Toxicological Sciences, 154(2), 332-340.
ATSDR. (2020). Toxicological Profile for Lead. Retrieved from https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=96&tid=22#
ATSDR. (2021). Minimal Risk Levels. March 2021 Retrieved from https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx
Beauval, N., Antherieu, S., Soyez, M., Gengler, N., Grova, N., Howsam, M., . . . A., G. (2017). Chemical evaluation of electronic cigarettes: multicomponent analysis of liquid refills and their corresponding aerosols. Journal of analytical toxicology, 41(8), 670-678.
Blount, B. C., Karwowski, M. P., Shields, P. G., Morel-Espinosa, M., Valentin-Blasini, L., Gardner, M., . . . Chambers, D. (2020). Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. New England Journal of Medicine, 382(8), 697-705.
Burke, A., & FitzGerald, G. A. (2003). Oxidative stress and smoking-induced vascular injury. Progress in cardiovascular diseases, 46(1), 79-90.
Chen, A., Krebs, N. M., Zhu, J., & Muscat, J. E. (2018). Nicotine metabolite ratio predicts smoking topography: the Pennsylvania Adult Smoking Study. Drug alcohol dependence, 190, 89-93.
Chen, Y. J. (2018). Effects of cigarette smoke particles properties on lung deposition models and application in mice COPD model. (Master),
Cheung, M. C., Spalding, P. B., Gutierrez, J. C., Balkan, W., Namias, N., Koniaris, L. G., & Zimmers, T. A. (2009). Body surface area prediction in normal, hypermuscular, and obese mice. Journal of Surgical Research, 153(2), 326-331.
Chou, L.-T. (2020). The relationship between airbone particulate matter oxidative potential and its characteristics in Taiwan urban area. (Master), National Taiwan University,
Correia-Álvarez, E., Keating, J. E., Glish, G., Tarran, R., & Sassano, M. F. (2020). Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Predictors of E-Liquid Induced Cellular Toxicity. Nicotine Tobacco Research, 22(Supplement_1), S4-S13.
Csiszar, A., Podlutsky, A., Wolin, M. S., Losonczy, G., Pacher, P., & Ungvari, Z. (2009). Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Frontiers in bioscience: a journal virtual library, 14, 3128.
Dusautoira, R., Zarconea, G., Verrieleb, M., Garçona, G., Fronvalb, I., Beauvala, N., . . . Anthérieu, S. (2021). Comparison of the chemical composition of aerosols from heated tobacco products, electronic cigarettes and tobacco cigarettes and their toxic impacts on the human bronchial epithelial BEAS-2B cells. Journal of Hazardous Materials.
EPA, U. S. (1991). Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals).
EPA, U. S. (2000). Chromium Compounds.
Fang, T., Verma, V., Guo, H., King, L. E., Edgerton, E. S., & Weber, R. J. (2015). A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmospheric Measurement Techniques, 8(1), 471-482.
Feng, Y., Kleinstreuer, C., & Rostami, A. (2015). Evaporation and condensation of multicomponent electronic cigarette droplets and conventional cigarette smoke particles in an idealized G3–G6 triple bifurcating unit. Journal of Aerosol Science, 80, 58-74.
Floyd, E. L., Queimado, L., Wang, J., Regens, J. L., & Johnson, D. L. (2018). Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PloS one, 13(12). doi:10.1371/journal.pone.0210147
Geiss, O., Bianchi, I., & Barrero-Moreno, J. (2016). Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. International Journal of Hygiene and Environmental Health, 219(3), 268-277.
Gu, W., & Darquenne, C. (2021). Heterogeneity in lobar and near-acini deposition of inhaled aerosol in the mouse lung. Journal of Aerosol Science, 151, 105642.
IARC. (2006). Inorganic and organic lead compounds. IARC monographs on the evaluation of carcinogenic risks to humans, 87, 1.
IARC. (2012a). Chromium (VI) compounds. IARC MONOGRAPHS, 100C, 147–167.
IARC. (2012b). Nickel and nickel compounds. IARC MONOGRAPHS, 100C, 169-218.
Insull Jr, W. (2009). The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. The American journal of medicine, 122(1), S3-S14.
Kaisar, M. A., Prasad, S., Liles, T., & Cucullo, L. (2016). A decade of e-cigarettes: limited research & unresolved safety concerns. Toxicology, 365, 67-75.
Kamilari, E., Farsalinos, K., Poulas, K., Kontoyannis, C. G., & Orkoula, M. G. (2018). Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food and Chemical Toxicology, 116, 233-237.
Kang, G. S., Gillespie, P. A., Gunnison, A., Moreira, A. L., Tchou-Wong, K. M., & Chen, L. C. (2011). Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environmental health perspectives, 119(2), 176-181.
Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current atherosclerosis reports, 19(11), 1-11.
Khan, N. A., Yogeswaran, S., Wang, Q., Muthumalage, T., Sundar, I. K., & Rahman, I. (2019). Waterpipe smoke and e-cigarette vapor differentially affect circadian molecular clock gene expression in mouse lungs. PloS one, 14(2), e0211645.
Krüsemann, E. J., Boesveldt, S., De Graaf, K., & Talhout, R. (2019). An e-liquid flavor wheel: a shared vocabulary based on systematically reviewing e-liquid flavor classifications in literature. Nicotine and Tobacco Research, 21(10), 1310-1319.
Krishnasamy, V. P., Hallowell, B. D., Ko, J. Y., Board, A., Hartnett, K. P., Salvatore, P. P., . . . Kim, L. (2020). Update: characteristics of a nationwide outbreak of e-cigarette, or vaping, product use–associated lung injury—United States, August 2019–January 2020. Morbidity and Mortality Weekly Report, 69(3), 90.
Lee, H. W., Park, S. H., Weng, M. w., Wang, H. T., Huang, W. C., Lepor, H., . . . Tang, M. S. (2018). E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proceedings of the National Academy of Sciences, 115(7), E1560-E1569.
Lee, N. C. (2000). Lead-free soldering-where the world is going: Society of Manufacturing Engineers.
Lee, Y. O., Nonnemaker, J. M., Bradfield, B., Hensel, E. C., & Robinson, R. J. (2018). Examining daily electronic cigarette puff topography among established and nonestablished cigarette smokers in their natural environment. Nicotine Tobacco Research, 20(10), 1283-1288.
Lerner, C. A., Sundar, I. K., Yao, H., Gerloff, J., Ossip, D. J., McIntosh, S., . . . Rahman, I. (2015). Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PloS one, 10(2), e0116732. doi:10.1371/journal.pone.0116732
Li, B., Pang, H. R., Zhao, L. C., Wang, B., Liu, C., McAdam, K. G., & Luo, D. S. (2014). Quantifying gas-phase temperature inside a burning cigarette. Industrial Engineering Chemistry Research, 53(18), 7810-7820.
Manigrasso, M., Buonanno, G., Fuoco, F. C., Stabile, L., & Avino, P. (2015). Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environmental Pollution, 196, 257-267. doi:10.1016/j.envpol.2014.10.013
Margham, J., McAdam, K., Forster, M., Liu, C., Wright, C., Mariner, D., & Proctor, C. (2016). Chemical composition of aerosol from an e-cigarette: a quantitative comparison with cigarette smoke. Chemical research in toxicology, 29(10), 1662-1678.
Martuzevicius, D., Prasauskas, T., Setyan, A., O’Connell, G., Cahours, X., Julien, R., & Colard, S. (2019). Characterization of the spatial and temporal dispersion differences between exhaled e-cigarette mist and cigarette smoke. Nicotine and Tobacco Research, 21(10), 1371-1377.
Meir, K. S., & Leitersdorf, E. (2004). Atherosclerosis in the apolipoprotein E–deficient mouse: a decade of progress. Arteriosclerosis, thrombosis, and vascular biology, 24(6), 1006-1014. doi:10.1161/01.ATV.0000128849.12617.f4
Mikheev, V. B., Brinkman, M. C., Granville, C. A., Gordon, S. M., & Clark, P. I. (2016). Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine & Tobacco Research, 18(9), 1895-1902. doi:10.1093/ntr/ntw128
Miller, F. J., Asgharian, B., Schroeter, J. D., & Price, O. (2016). Improvements and additions to the multiple path particle dosimetry model. Journal of Aerosol Science, 99, 14-26.
Mulder, H. A., Stewart, J. B., Blue, I. P., Krakowiak, R. I., Patterson, J. L., Karin, K. N., . . . Poklis, J. L. (2020). Characterization of E-cigarette coil temperature and toxic metal analysis by infrared temperature sensing and scanning electron microscopy–energy-dispersive X-ray. Inhalation toxicology, 32(13-14), 447-455.
Nam, D., Ni, C. W., Rezvan, A., Suo, J., Budzyn, K., Llanos, A., . . . Jo, H. (2009). Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. American Journal of Physiology-Heart and Circulatory Physiology, 297(4), H1535. doi:10.1152/ajpheart.00510.2009.
Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2007). Lead exposure and cardiovascular disease—a systematic review. Environmental health perspectives, 115(3), 472-482.
Navas-Acien, A., Selvin, E., Sharrett, A. R., Calderon-Aranda, E., Silbergeld, E., & Guallar, E. (2004). Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation, 109(25), 3196-3201.
Nisbet, I. C. T., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology Pharmacology, 16(3), 290-300.
OEHHA. (2009). Technical Support Document for Cancer Potency Factors Sacramento, CA
Olmedo, P., Goessler, W., Tanda, S., Grau-Perez, M., Jarmul, S., Aherrera, A., . . . Navas-Acien, A. (2018). Metal concentrations in e-cigarette liquid and aerosol samples: the contribution of metallic coils. Environmental health perspectives, 126(2), 027010.
Palazzolo, D. L., Crow, A. P., Nelson, J. M., & Johnson, R. A. (2017). Trace metals derived from electronic cigarette (ECIG) generated aerosol: potential problem of ECIG devices that contain nickel. Frontiers in physiology, 7, 663.
Papaefstathiou, E., Bezantakos, S., Stylianou, M., Biskos, G., & Agapiou, A. (2020). Comparison of particle size distributions and volatile organic compounds exhaled by e-cigarette and cigarette users. Journal of Aerosol Science, 141. doi:10.1016/j.jaerosci.2019.105487
Pappas, R. S., Fresquez, M. R., Martone, N., & Watson, C. H. (2014). Toxic metal concentrations in mainstream smoke from cigarettes available in the USA. Journal of analytical toxicology, 38(4), 204-211.
Pellegrino, R. M., Tinghino, B., Mangiaracina, G., Marani, A., Vitali, M., Protano, C., . . . Cattaruzza, M. S. (2012). Electronic cigarettes: an evaluation of exposure to chemicals and fine particulate matter (PM). Annali di igiene, 24(4), 279-288.
Pichelstorfer, L., Hofmann, W., Winkler-Heil, R., Yurteri, C. U., & McAughey, J. (2016). Simulation of aerosol dynamics and deposition of combustible and electronic cigarette aerosols in the human respiratory tract. Journal of Aerosol Science, 99, 125-132. doi:10.1016/j.jaerosci.2016.01.017
Pinto, E., & Ferreira, I. M. (2015). Cation transporters/channels in plants: tools for nutrient biofortification. Journal of plant physiology, 179, 64-82.
Porra, L., Dégrugilliers, L., Broche, L., Albu, G., Strengell, S., Suhonen, H., . . . Bayat, S. (2018). Quantitative Imaging of Regional Aerosol Deposition, Lung Ventilation and Morphology by Synchrotron Radiation CT. Scientific Reports, 8(1), 3519. doi:10.1038/s41598-018-20986-x
Qasim, H., Karim, Z. A., Silva‐Espinoza, J. C., Khasawneh, F. T., Rivera, J. O., Ellis, C. C., . . . Alshbool, F. Z. (2018). Short‐Term E‐Cigarette Exposure Increases the Risk of Thrombogenesis and Enhances Platelet Function in Mice. Journal of the American Heart Association, 7(15), e009264.
Rankin, G. D., Wingfors, H., Uski, O., Hedman, L., Ekstrand‐Hammarström, B., Bosson, J., & Lundbäck, M. (2019). The toxic potential of a fourth‐generation E‐cigarette on human lung cell lines and tissue explants. Journal of Applied Toxicology, 39(8), 1143-1154.
Rom, O., Pecorelli, A., Valacchi, G., & Reznick, A. Z. (2015). Are E‐cigarettes a safe and good alternative to cigarette smoking? Annals of the New York Academy of Sciences, 1340(1), 65-74. doi:10.1111/nyas.12609
Sangwung, P., Zhou, G., Nayak, L., Chan, E. R., Kumar, S., Kang, D. W., . . . Sugi, K. (2017). KLF2 and KLF4 control endothelial identity and vascular integrity. JCI insight, 2(4).
Sasso, G. L., Schlage, W. K., Boué, S., Veljkovic, E., Peitsch, M. C., & Hoeng, J. (2016). The Apoe−/− mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. Journal of translational medicine, 14(1), 1-16.
Sessa, W. C. (2004). eNOS at a glance. Journal of cell science, 117(12), 2427-2429.
Shi, H., Fan, X., Horton, A., Haller, S. T., Kennedy, D. J., Schiefer, I. T., . . . Tian, J. (2019). The effect of electronic-cigarette vaping on cardiac function and angiogenesis in mice. Scientific Reports, 9(1), 1-9.
Son, Y., Mishin, V., Laskin, J. D., Mainelis, G., Wackowski, O. A., Delnevo, C., . . . Meng, Q. (2019). Hydroxyl radicals in e-cigarette vapor and e-vapor oxidative potentials under different vaping patterns. Chemical research in toxicology, 32(6), 1087-1095.
Springer, T. A. (1990). Adhesion receptors of the immune system. Nature, 346(6283), 425-434.
Stabile, L., Buonanno, G., Ficco, G., & Scungio, M. (2017). Smokers’ lung cancer risk related to the cigarette-generated mainstream particles. Journal of Aerosol Science, 107, 41-54.
Sze-To, G. N., Wu, C. L., Chao, C. Y., Wan, M. P., & Chan, T. C. (2012). Exposure and cancer risk toward cooking-generated ultrafine and coarse particles in Hong Kong homes. HVAC&R Research, 18(1-2), 204-216.
Tayyarah, R., & Long, G. A. (2014). Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regulatory Toxicology and Pharmacology, 70(3), 704-710.
Vinchurkar, S., De Backer, L., Vos, W., Van Holsbeke, C., De Backer, J., & De Backer, W. (2012). A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients: effect of upper airway morphology and comparison with in vivo data. Inhalation Toxicology, 24(2), 81-88. doi:10.3109/08958378.2011.644351
Wallace, L. A., Ott, W. R., Cheng, K. C., Zhao, T., & Hildemann, L. (2021). Method for estimating the volatility of aerosols using the piezobalance: Examples from vaping e-cigarette and marijuana liquids. Atmospheric Environment, 253, 118379.
Wang, P., Chen, W., Liao, J., Matsuo, T., Ito, K., Fowles, J., . . . Kumagai, K. (2017). A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PloS one, 12(1), e0169811.
Weaver, S. R., Majeed, B. A., Pechacek, T. F., Nyman, A. L., Gregory, K. R., & Eriksen, M. P. (2016). Use of electronic nicotine delivery systems and other tobacco products among USA adults, 2014: results from a national survey. International journal of public health, 61(2), 177-188. doi:10.1007/s00038-015-0761-0
Williams, M., Bozhilov, K., Ghai, S., & Talbot, P. (2017). Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PloS one, 12(4), e0175430.
Williams, M., Bozhilov, K. N., & Talbot, P. (2019). Analysis of the elements and metals in multiple generations of electronic cigarette atomizers. Environmental Research, 175, 156-166.
Williams, M., Li, J., & Talbot, P. (2019). Effects of model, method of collection, and topography on chemical elements and metals in the aerosol of tank-style electronic cigarettes. Scientific Reports, 9(1), 13969. doi:10.1038/s41598-019-50441-4
Yang, H. Y. (2018). Hazardous Air Pollutants in Fine Particulate Matters:Source Apportionment and Exposure Risk Assessment at Different Areas in Taiwan. (Master), National Yang-Ming University, Retrieved from https://hdl.handle.net/11296/2rj7vp
Zaragoza, C., Gomez-Guerrero, C., Martin-Ventura, J. L., Blanco-Colio, L., Lavin, B., Mallavia, B., . . . Egido, J. (2011). Animal models of cardiovascular diseases. BioMed Research International, 2011.
Zhao, D., Aravindakshan, A., Hilpert, M., Olmedo, P., Rule, A. M., Navas-Acien, A., & Aherrera, A. (2020). Metal/metalloid levels in electronic cigarette liquids, aerosols, and human biosamples: a systematic review. Environmental health perspectives, 128(3), 036001.

支持網站營運廣告

 FB留言板
支持網站營運廣告
支持網站營運廣告
支持網站營運廣告

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *